- Day 1 - Getting started
- Day 2 - Functions & Spark
- Day 3 - Tidyverse
- Day 4 - Plotly
- Day 5 - Shiny Introduction
- Day 6 - Reactivity
- Day 7 - Modules
- Day 8 - Shiny Project
January, 2018
diamonds%>%
dplyr::sample_n(1000)%>%
plot_ly(colors = pal_deloitte)%>%
add_markers(
x = ~carat,
y = ~price,
color = ~color,
size = ~carat,
text = ~paste("Clarity: ", clarity)
)
economics_long%>%
plot_ly(
x=~date,
y=~value,
color=~variable,
colors = pal_deloitte,
type="scatter",
mode="lines"
)
diamonds %>%
count(cut, clarity) %>%
plot_ly(colors = pal_deloitte)%>%
add_bars(
x = ~cut,
y = ~n,
color = ~clarity
)
diamonds%>%
group_by(color,clarity)%>%
summarise(n=n())%>%
mutate(
nn=sum(n),
prop=n/nn
)%>%
plot_ly(x = ~color,colors = pal_deloitte)%>%
add_bars(
y = ~prop,
color = ~clarity
) %>%
layout(barmode = "stack")
diamonds%>%
group_by(cut, clarity) %>%
summarise(N=n())%>%
plot_ly() %>%
add_heatmap(
x = ~cut,
y = ~clarity,
z =~N
)
diamonds%>%
plot_ly(colors = pal_deloitte)%>%
add_boxplot(
x = ~cut,
y = ~price,
color = ~clarity
) %>%
layout(boxmode = "group")
plot_ly(alpha = 0.6,colors = pal_deloitte) %>% add_histogram(x = ~rnorm(500)) %>% add_histogram(x = ~rnorm(500) + 1) %>% layout(barmode = "overlay")
plot_ly(alpha = 0.6,colors = pal_deloitte) %>% add_histogram(x = ~rnorm(500)) %>% add_histogram(x = ~rnorm(500) + 1) %>% layout(barmode = "stack")
diamonds%>% plot_ly(colors = pal_deloitte2)%>% add_histogram2d(x = ~carat, y = ~price)
diamonds%>% plot_ly(colors = pal_deloitte2)%>% add_histogram2dcontour(x = ~carat, y = ~price)
HINT: The calculation is similar to the transition rate, except that this time just use the made_payment instead of the cd_bucket.